Поиск:  




Кунсткамера

Читальный зал

Гроссе Э., Вайсмантель X.

Химия для любознательных. Основы химии и занимательные опыты.

Глава 5. МАТЕРИАЛЫ НА ЛЮБОЙ ВКУС: ПЛАСТМАССЫ ВЧЕРА, СЕГОДНЯ И ЗАВТРА

У металлов очень древняя история. Например, история меди насчитывает 7700 лет, а предметы из железа и стали были известны 4000 лет назад в Китае, Индии, Вавилоне и Ассирии. В отличие от металлов, синтетические материалы - пластмассы, синтетические эластомеры - каучуки и резины, химические волокна, силиконы - начали производить немногим более 50 лет назад.
Несмотря на это, они во многих отношениях превосходят давно известные материалы. Правда, у каждого из них, как и у природных материалов, есть свои недостатки, и при выборе, разумеется, приходится их учитывать и сопоставлять с достоинствами. Главное преимущество пластмасс по сравнению с металлами заключается в том, что их свойства легче регулировать. Поэтому пластмассы быстрее и лучше можно приспособить к требованиям практики.
К преимуществам пластмасс относятся также низкая плотность, отсутствие у большинства из них запаха и вкуса, высокая стойкость по отношению к атмосферной коррозии, к кислотам и щелочам. Кроме того, изделиям из пластмассы легко можно придать любую форму.
Наконец, большинство пластмасс превосходно поддается крашению и обладает отличными электро- и теплоизоляционными свойствами.
Зато устойчивость к высоким температурам и нередко прочность у них меньше, а тепловое расширение обычно больше, чем у металлов. Кроме того, некоторые пластмассы горючи.

ЗАМЕНИТЕЛЬ?

В тяжелые времена, в годы бедствий и потрясений создавались так называемые "эрзацы" - заменители отсутствующих веществ. Например, в первую мировую войну вместо тканей из шерсти и хлопка были предложены ткани из бумаги. Во время второй мировой войны появилось такое мыло из глины, у которого не было ничего общего с обычным мылом, кроме названия и формы кусков. Разумеется, это были очень плохие заменители.
Тогда синтетические материалы тоже должны были служить заменителями. Из-за отсутствия выбора часто приходилось использовать такие типы пластмасс, которые для данного случая не подходили или не были доведены до требуемого качества и достаточно проверены. Конечно, все это повредило репутации синтетических материалов. Однако в наши дни их уже нельзя рассматривать просто как заменители.
Правда, они и теперь часто применяются вместо природных материалов, но тогда, когда существенно превосходят их. Если вначале опыт работы с синтетическими материалами бывал неудачным, то причиной чаще всего было их неправильное использование. Многие инженеры старой школы считали новые материалы неполноценными. Во всех неудачах у них всегда был виноват, конечно, заменитель.
В наши дни практика заставила многих скептиков отказаться от своих прежних взглядов. Приведем лишь один пример. Вкладыши подшипников для сельскохозяйственных машин, для гребных валов, прокатных линий и вагонов сегодня могут изготавливаться из фенопластов. Они намного легче бронзовых или из сурьмянистого свинца - плотность фенопластов составляет приблизительно 1,7 г/см3, а бронзы - 8 г/см3.
Кроме того, они долговечнее, и смазкой для них может служить вода. В прокатных станах вкладыши подшипников из фенопластов работают в 120 раз дольше, чем из сурьмянистого свинца.
В высокоразвитой химической промышленности ГДР производству синтетических материалов принадлежит особое место. Главное внимание уделяется изготовлению наиболее ценных типов пластмасс, а важнейшей задачей считается все более полное использование тех многообразных возможностей, которые предоставляет недавно созданная в ГДР нефтехимическая промышленность.
Наряду с давно известными пластиками, служащими для изготовления предметов широкого потребления, промышленность выпускает все больше новых пластмасс специального назначения. В среднем 70-80% стоимости всей выпускаемой в ГДР продукции приходится на долю материалов.
Непрерывный научно-технический прогресс, автоматизация производства и повышение производительности труда - как сейчас, так и тем более в будущем - немыслимы без новых материалов.
В самом деле, борьба за экономию материалов тесно связана с применением полимеров во всех отраслях народного хозяйства. Ведь пластмассы гораздо легче поддаются обработке, чем стальной прокат, и при их переработке получается меньше отходов. Но преимущество пластмасс не только в этом. Пластмассовые детали машин и аппаратов легче, устойчивее к коррозии и обычно дешевле.
Можно не сомневаться в том, что в будущем соотношение между использованием пластмасс и конструкционной стали существенно изменится в пользу пластмасс. По самым осторожным прогнозам, это соотношение по массе вместо 1 : 23 в наши дни к 1980 г. изменится до 1 : 10.

ВЕЛИКАНЫ СРЕДИ МОЛЕКУЛ

В соответствии с государственным стандартом "пластмассами называются материалы, основной составной частью которых являются такие высокомолекулярные органические соединения, которые образуются в результате синтеза или же превращений природных продуктов. При переработке в определенных условиях они, как правило, проявляют пластичность и способность к формованию или деформации".
Молекулярная масса воды составляет 18 условных единиц, а виноградного сахара - 180. Хотя молекула виноградного сахара очень велика по сравнению с молекулой воды, ее еще нельзя назвать гигантской.
Гигантские молекулы - химики называют их макромолекулами (от греческого makros - большой) - содержат от тысячи до нескольких миллионов атомов. Их относительную молекулярную массу нельзя выразить определенным числом, мы можем указать для нее лишь пределы.
структура полимеров Человек научился создавать макромолекулы вначале в лаборатории, а позднее - в промышленном масштабе из соединений простого строения - так называемых мономеров. Число молекул мономеров, которые соединяются друг с другом и образуют молекулу полимера, мы называем степенью полимеризации. Слово "полимер" образовано от греческих слов polys (много) и meros (часть).
Физические свойства полимеров сильно зависят от степени полимеризации. Кроме того, они зависят и от того, как соединяются друг с другом молекулы мономеров. Образованные из них макромолекулы могут представлять собой прямые или разветвленные цепи, а также клубки или сети. Все эти типы полимеров показаны на рисунке.
Сверху мы видим прямую цепь, ниже - разветвленную цепь, еще ниже - клубок и сеть. При растяжении полимера значительная часть цепей в клубке выстраивается параллельно друг другу. Такой сдвиг молекул в отношении одной главной оси вызывает изменение прочности - она увеличивается по направлению растяжения. При нагревании цепи молекул таких пластмасс обычно легко сдвигаются относительно друг друга. При этом пластмассы размягчаются и приобретают текучесть. Такие пластмассы мы будем называть термопластами.
Напротив, если цепи атомов в молекулах полимера соединены между собой мостиками и образуют сетку, то даже при воздействии тепла сдвиг таких цепей относительно друг друга невозможен. Такие пластмассы называются реактопластами.
Другими словами, реактопласты - это такие пластмассы, которые получаются из низкомолекулярных мономеров, и отверждаются под действием тепла, катализаторов или отвердителей с образованием полимеров трехмерной структуры. Таким образом, при переработке в изделия реактопласты необратимо теряют способность переходить в вязкотекучее состояние.
В отличие от них, при формовании термопластов не происходит отвердения, и они в изделии сохраняют способность вновь переходить в вязкотекучее состояние. В 1973 г. мировое производство пластмасс достигло 43 млн. т. Из них около 75% приходилось на долю термопластов (полиэтилен, поливинилхлорид, полистирол и др.)
В дальнейшем доля термопластов в общем производстве пластмасс будет еще больше увеличиватьс. - Прим. перев.)
В ГДР их называют дуропластами (от латинского durus - твердый). В самом деле, из всех пластмасс тверже всего те, которые имеют сетку трехмерной структуры, т.е. такие, у которых соединение цепей происходит по всем трем осям координат. Эти пластмассы стойки и к действию растворителей.

ИССЛЕДУЕМ ПЛАСТМАССЫ

"За свою продукцию ручаюсь головой" - эти слова сегодня часто можно услышать на предприятиях. Однако готовую продукцию высокого качества можно изготовить только из безупречных исходных материалов. Поэтому пластмассы всегда подвергают очень тщательному испытанию.
Результатами этого строгого экзамена интересуются обе стороны - и те, кто производят пластмассы, и те, кто занимаются их переработкой.
Первые всегда стремятся улучшить качество выпускаемой продукции, а вторым важно выяснить, какие материалы можно использовать для тех или иных целей.
В число этих испытаний входят измерение прочности на растяжение, твердости, прочности на изгиб, эластичности, паро- и газопроницаемости, прочности к истиранию, плотности, водопоглощения, исследование поведения при нагревании, воздействии света и в электрическом поле. Наряду с этим важнейшую роль играет изучение стойкости пластмасс по отношению к различным химическим реактивам.
У читателя, вероятно, найдется образец какой-нибудь пластмассы для исследования. Сначала выясним, из чего она состоит, как называется и для чего используется. Ответить на эти вопросы не всегда легко. Некоторые сведения мы могли бы получить, определив химический состав. С этой целью нам понадобилось бы поместить в пробирку 100-200 мг исследуемого сухого образца и расплавить его вместе с металлическим натрием, нагревая пробирку почти до размягчения стекла.
Плав мы могли бы потом растворить в воде и в полученном растворе обнаружить:
  • азот - при добавлении сульфата железа(II), хлорида железа(III) и разбавленной соляной кислоты (образование берлинской лазури);
  • серу - при действии пентацианонитрозилферрата(Ш), или нитропруссида натрия (фиолетовое окрашивание);
  • хлор - при действии нитрата серебра в присутствии азотной кислоты (осадок хлорида серебра, обнаружению мешают некоторые азотсодержащие соединения);
  • фосфор - при добавлении азотной кислоты, упаривании раствора и последующем действии молибдата аммония (желтый осадок).
    Однако многим читателям металлический натрий недоступен. Кроме того, ввиду опасности работы с ним, начинающим химикам не стоит проводить анализ этим методом. Вместо этого ограничимся более простым определением хлора - пробой Бейльштейна, которая нам уже знакома. Для этого раскалим медную проволоку в несветящейся зоне пламени горелки Бунзена до исчезновения зеленого окрашивания. На конце этой проволоки внесем в пламя горелки пробу исследуемой пластмассы. Если она содержит хлор или другие галогены, то образуются летучие галогениды меди, которые окрашивают пламя в интенсивный зеленый цвет.
    Для большинства обычно применяемых пластмасс нам удастся решить поставленную задачу даже в том случае, если мы ограничимся только определением плотности, температуры размягчения и плавления, пробой на сгорание, а также исследованием кислотности продуктов разложения и поведения пластмассы по отношению к некоторым химическим реактивам. Полученные данные сверим с приведенными в таблице "Свойства пластмасс".

    Определение плотности

    Взвесим образец пластмассы, не содержащий пузырей, определим его объем по вытеснению воды или путем непосредственного измерения и вычислим плотность (в г/см3), пользуясь формулой: p = m/V где m - масса образца, г; V - объем образца, см3. В случае смесей различных типов пластмасс или пластмасс с добавками - наполнителями - полученные значения колеблются в некоторых пределах.

    Проба на плавление

    Сначала выясним, плавится ли исследуемая пластмасса вообще. Для этого внесем ее в струю горячего воздуха, нагретого горелкой, или нагреем исследуемый образец на металлической или асбестовой подставке.
    В зависимости от того, что будет происходить с пластмассой, мы сможем отнести ее к термо- или реактопластам.
    Правда, не исключено, что наш образец не относится ни к одной из этих групп. Об этом мы поговорим позднее.

    Температура размягчения

    Вставим пробы пластмассы - лучше всего полоски длиной 5-10 см и шириной 1 см - в железный тигель, заполненный сухим песком. Тигель постепенно нагреем маленьким пламенем горелки.
    В песок вставим термометр. Когда полоски согнутся, по показаниям термометра заметим температуру размягчения.
    Для измерения температуры размягчения можно использовать и химический стакан, заполненный маслом. (Осторожно! В горячее масло не должна попадать вода! Исключить опасность разбрызгивания!)
    Для поливинилхлорида, у которого температура размягчения составляет 75-77 °С, и для полистирола с температурой размягчения 80-100 °С вместо масла можно обойтись водой.

    Температура текучести

    Аналогично можно определить и температуру текучести, т. е. тот интервал температуры, в котором пластмассы приобретают текучесть. Однако напомним, что некоторые пластмассы разлагаются раньше, чем достигается температура текучести.

    Проба на сгорание

    Возьмем тигельными щипцами образец пластмассы и поместим его ненадолго в верхнюю часть высокотемпературной зоны пламени горелки. Вынем пластмассу из пламени и посмотрим, будет ли она гореть дальше.
    При этом обратим внимание на цвет пламени; заметим, образуется ли копоть или дым, потрескивает ли огонь, плавится ли пластмасса с образованием капель.
    Ошибки в определении типа полимера могут возникать из-за того, что мы исследуем не чистую смолу, а с добавками - пластификаторами и наполнителями.
    К сожалению, свойства этих добавок иногда оказываются заметнее свойств чистого полимера.

    Исследование продуктов разложения

    В маленьких пробирках нагреем измельченные пробы различных пластмасс и обратим внимание на запах, цвет и реакцию на лакмусовую бумагу образующихся продуктов разложения.
    (Нюхать осторожно! Некоторые пластмассы, например политетрафторэтилен, образуют ядовитые продукты разложения.)

    Химическая стойкость

    Пробы пластмасс погружают в разбавленные и концентрированные растворы кислот и щелочей - на холоду или при нагревании, обрабатывают органическими растворителями и таким образом испытывают их на химическую стойкость. изучение набухания пластмасс
    Для изучения набухания вырежем прямоугольный кусочек пластмассы и острым скальпелем сделаем тонкий срез. Полученную тонкую пленку раздвоим, как показано на рисунке.
    Половину этой пленки погрузим в пробирку с соответствующей жидкостью. Исследуем набухание в различных жидкостях: - в воде, кислотах, щелочах, бензоле, метилбензоле (толуоле) и др. Пробирки оставим по меньшей мере на 5 дней.
    (Учесть пожароопасность некоторых растворителей!)
    Чтобы жидкость меньше испарялась, заткнем пробирки кусочками ваты. В некоторых случаях, например для поливинилхлорида (ПВХ) в бензоле, мы обнаружим заметное увеличение той части полоски, которая находилась в растворителе. Если образец становится хрупким, то это скорее всего вызвано вымыванием пластификатора.
    Пластификаторами обычно служат сложные эфиры.

    КАК УЛУЧШАЮТ ПРИРОДНЫЕ МАТЕРИАЛЫ

    Сколько лет человечеству, столько лет и его борьбе с природой. Человечество прошло в своем развитии долгий путь от неспособности противостоять силам природы до понимания взаимосвязи явлений природы и использования их в своих целях. И прежде всего люди научились добывать и применять различные природные материалы.
    В силу ряда случайностей свойства природных материалов непостоянны. Их можно улучшить путем воздействия на растительные и животные организмы. Но есть и другой путь - мы можем изменить сами природные материалы, подвергая физическим и химическим воздействиям и изменяя их свойства.
    К "исправленным" природным веществам относятся, в частности, целлюлоза, казеин и каучук. Огромные молекулы этих соединений образуют длинные более или менее скрученные или растянутые цепи. Основные "кирпичики", из которых они строятся - это в случае целлюлозы - молекулы глюкозы, для казеина - молекулы аминокислот, а у натурального каучука - соединение формулы С5Н7, изопрен.
    Разнообразнее всего до сих пор варьировалось строение целлюлозы. Чего только не получают из нее - бумагу, взрывчатые вещества, пластмассы, искусственный шелк, штапельное волокно! Оболочки клеток растений состоят из почти чистой целлюлозы. Целлюлозу получают из древесины, тростника или соломы на специальных целлюлозных фабриках. Ее производство в ГДР с 1950 г. постоянно увеличивается. Одновременно в соответствии с единым планом координации развития экономики в социалистических странах крупнейшие целлюлозно-бумажные комбинаты возникают в Советском Союзе - в восточной Сибири.

    ЕСЛИ ВЗЯТЬ ЦЕЛЛЮЛОЗУ, КИСЛОТУ И КАМФОРУ

    ... В поисках массы для печатных валов американский исследователь Хэйетт попробовал добавить к динитрату целлюлозы камфору. При очень тщательном перемешивании он получил роговидную эластичную массу. Это открытие в 1870 г. принесло Хэйетту победу на конкурсе, объявленном с целью заменить слоновую кость для бильярдных шаров более дешевым материалом.
    Новый материал, который автор назвал целлулоидом, выпускается промышленностью с 1872 г. Из него делают расчески, украшения, бильярдные шары, игрушки, рукоятки, мячи, щетки, корпусы авторучек, угольники и транспортиры для черчения, пленку и многое другое.
    Вначале казалось, что другие пластмассы вытеснят целлулоид, который слишком легко воспламеняется. Однако с этим его недостатком приходится мириться до сих пор, потому что ни один другой материал не имеет такого красивого блеска. В этом нетрудно убедиться - вспомним хотя бы великолепную, похожую на перламутр облицовку аккордеонов.

    Получение нитратов целлюлозы

    В колбу Эрленмейера, погруженную в большой сосуд с холодной водой, поместим немного концентрированной азотной кислоты и малыми порциями добавим к ней концентрированную серную кислоту.
    К 30 мл этой нитрующей смеси при температуре не выше 20 °С в маленьком химическом стакане добавим немного чистой медицинской ваты - около 1 г - и дадим ей полностью пропитаться кислотой.
    (При всех опытах по нитрованию целлюлозы и операциях с полученными нитратами будем избегать растирания или ударов стеклянной палочкой, так как это может привести к воспламенению.)
    Через 3 минуты - ни в коем случае не позже! - стеклянной палочкой вынем вату и перенесем ее в большой сосуд с водой. Полученную пронитрованную целлюлозу будем промывать 10 минут - лучше всего, поддерживая в сосуде непрерывный ток водопроводной воды.
    После этого вынем вату, отожмем, расстелим как можно более тонким слоем на листе фильтровальной бумаги и дадим ей высохнуть на воздухе.
    В результате кратковременной обработки азотной кислотой в звеньях, из которых построена молекула целлюлозы, - в остатках глюкозы две из трех гидроксильных групп подвергаются этерификацни. Таким образом, образуется динитрат целлюлозы:
    нитроцеллюлоза
    Пока пронитрованная вата сушится, из остатка нитрующей смеси и другого куска ваты мы можем получить тринитрат целлюлозы. Для этого опыт проведем точно так же, как и предыдущий, но время обработки ваты нитрующей смесью увеличим до 15 минут.

    Дальнейшая переработка динитрата целлюлозы

    Чтобы ознакомиться со свойствами полученного динитрата, тигельными щипцами внесем в пламя маленькие кусочки необработанной и пронитрованной целлюлозы. Мы увидим, что динитрат целлюлозы сгорает намного быстрее, чем исходная целлюлоза.
    Малую пробу динитрата нагреем в пробирке на слабом огне. Вещество разлагается с образованием коричневых паров оксида азота(IV) NO2. Осторожно - он чрезвычайно ядовит!
    Поместим в пробирку приблизительно одну треть полученного динитрата целлюлозы и добавим смесь 2 частей эфира и 1 части спирта (денатурата). Пробирку неплотно закроем пробкой.
    В зависимости от количества растворителя мы можем получить раствор от разбавленного до очень вязкого. Этот раствор называется коллодием. Если описанные опыты не удалось провести из-за отсутствия концентрированных кислот, то готовый коллодий можно купить в аптеке или аптекарском магазине.
    Малое количество коллодия намажем на тыльную часть руки и дадим ему испариться. (Эфир очень огнеопасен! В помещении не должно быть огня!)
    Место, на которое был нанесен раствор, сильно охлаждается (отнимается теплота испарения). Остается прозрачная пленка из коллодия, прочно прилегающая к коже. Поэтому раствор коллодия может служить "жидким пластырем" для заклеивания мелких ран и ссадин.
    Коллодий входит также в качестве пленкообразователя в состав некоторых лаков.
    Наряду с ним для этой цели используется и тринитрат целлюлозы. Быстро высыхающие цветные нитролаки и бесцветный цапонлак, вероятно, знакомы многим читателям. Остаток динитрата целлюлозы в химическом стакане смочим спиртом.
    Одновременно в другом стакане растворим в спирте немного камфоры - столько, чтобы в конечном продукте ее было 20-25% по массе. (Аптечный камфорный спирт, применяемый при боли в суставах и вывихах, представляет собой раствор камфоры в спирте.)
    К раствору камфоры будем малыми порциями добавлять смоченный спиртом динитрат целлюлозы, тщательно перемешивая (в промышленности перемешивают около 1 часа под давлением 20 ат).
    Если смесь становится слишком густой, нужно добавить спирта. Образующуюся кашицу нанесем не слишком толстым слоем на металлическую или стеклянную пластинку и оставим ее в умеренно теплом месте, чтобы спирт испарился. На поверхности образуется шероховатый слой, похожий на покрытие фотопластинки. Это целлулоид.
    Можно выровнять его поверхность - стоит только наложить сверху нагретую металлическую пластинку. Поскольку температура размягчения целлулоида составляет 70-80 °С, его форму легко можно изменять в горячей воде.
    Полоску полученного целлулоида тигельными щипцами внесем в пламя. Он загорается при 240 °С и горит очень интенсивно, сильно увеличивая температуру пламени и окрашивая его в желтый цвет. Кроме того, при горении появляется запах камфоры.

    Опыты с тринитратом целлюлозы

    Пока мы проводили опыты с динитратом целлюлозы, тринитрат высох на воздухе. По виду эта "вата" после нитрования не изменилась, но, если ее поджечь, то она сгорит мгновенно - в отличие от исходной ваты.
    При обработке смесью спирта и эфира (1 : 1), пропаноном (ацетоном) или этилэтанатом (этилацетатом) тринитрат целлюлозы набухает или, иными словами, желатинируется. При нанесении полученной массы на пластинку образуется пленка, которая при поджигании быстро сгорает без остатка.

    ДРЕВЕСИНА И ПЛАСТМАССЫ

    Древесина и полученная из нее целлюлоза используются весьма широко, но известны еще далеко не все варианты их применения. Проблемой лучшего использования древесины занимаются представители различных областей науки и техники.
    Биологи стремятся вывести более ценные виды, улучшить породы деревьев, технологи изобретают новые способы переработки древесины, а химики подвергают древесину самым различным превращениям.

    Изготовим пергаментную бумагу

    Плоскую фарфоровую чашку заполним наполовину раствором серной кислоты. Для его приготовления тонкой струйкой добавим 30 мл концентрированной серной кислоты к 20 мл воды (лить кислоту в воду!). Затем раствор нужно охладить - по возможности до 5 °С.
    Пластмассовым пинцетом - мы можем изготовить его сами из жесткого поливинилхлорида (винипласта) - поместим шесть пронумерованных карандашом проб фильтровальной бумаги (круглые фильтры или полоски шириной 1 см) на 5, 10, 15, 20, 25 и 30 секунд в кислоту. После этого быстро перенесем пробы в большой стакан с водой, к которой добавлено немного нашатырного спирта. Оставим их в этой воде надолго, а затем высушим. Прежде мягкая и пористая бумага становится твердой и гладкой. Если мы измерим полоски, то обнаружим, что они уменьшились в размерах.
    Испытаем прочность нашей "пергаментной бумаги" на разрыв. Для этого, отступив от края полоски на 0,5 см, согнем ее конец и наложим его на остальную часть. Так же загнем и другой конец. К укрепленным краям присоединим два зажима и закрепим полоску в штативе. В середине навесим на нее груз.
    Необработанная бумага (полоска шириной 1 см из круглого фильтра) порвется скорее всего при нагрузке 450 г, тогда как проба, обработанная серной кислотой, выдержит нагрузку 1750 г. Для опытов возьмем не слишком плотную бумагу. Лучше всего подойдет тонкая фильтровальная бумага с гладкой поверхностью. В промышленности для той же цели используют бумагу толщиной 0,1-0,2 мм.
    С помощью направляющих роликов из стекла и резины ее в течение 5-20 секунд протягивают через ванну с 73%-ной серной кислотой. Благодаря специальному приспособлению, которое удерживает бумагу в растянутом состоянии, при этом предотвращается ее чрезмерная усадка.
    Фибра-материал для изготовления чемоданов получается в результате обработки бумаги раствором хлорида цинка. "Пергаментированные" полосы бумаги наматываются на барабан, где слои ее спрессовываются. Полученный рулон разрезают на пластины, еще раз обрабатывают их водой и затем прессуют.
    Для приготовления раствора хлорида цинка чуть-чуть разбавим концентрированную соляную кислоту. Будем добавлять к ней цинк до тех пор, пока кислота не перестанет с ним реагировать. (При растворении цинка выделяется большое количество водорода. Поэтому вблизи не должно быть открытого огня, и опыт нужно проводить у открытого окна или в вытяжном шкафу.)
    В раствор, который мы отделим декантацией от избыточного цинка, опустим на 5-10 минут фильтровальную бумагу. После этого нужно тщательно промыть ее водой.
    При этих процессах, которые называются пергаментированием, бумага очень сильно набухает. Длинные молекулы целлюлозы в результате частичного расщепления превращаются в так называемую гидроцеллюлозу, а при более продолжительной обработке - в продукт с еще более короткими цепями - амилоид.
    В результате первоначально рыхлая волокнистая структура бумаги в значительной степени изменяется, и высушивание сопровождается усадкой.
    При действии этановой (уксусной) кислоты и ее ангидрида целлюлоза превращается в растворимую форму - этанат (ацетат) целлюлозы (Применяется также другое наименование - ацетилцеллюлоза - Прим. перев.).
    Последний используют для получения пластмасс, а из его растворов в органических растворителях изготовляют лаки, клеи, фото- и кинопленку, волокна. Целлон - материал, из которого делают негорючую пленку, - состоит из этаната целлюлозы и камфоры.

    Читать сначала >>> || Содержание книги || Читать дальше >>>

    Читальный зал кунсткамеры: что тут есть?


     


  • Рассылки Subscribe.Ru
    Алхимик - новости и советы