Поиск:  




Кунсткамера

Читальный зал

Гроссе Э., Вайсмантель X.

Химия для любознательных. Основы химии и занимательные опыты.

Глава 5. Продолжение

ОТ ВЫКЛЮЧАТЕЛЯ ДО АВТОМОБИЛЬНОГО КУЗОВА

В былые времена, если химики получали в результате своих опытов "смолу", т. е. такой продукт, который не поддавался кристаллизации, они не очень-то радовались. В наши же дни многие химики стремятся изготовить такие смолы: многие из них в результате дальнейшей переработки превращаются в материалы, необходимые для промышленности.
Когда немецкий химик Байер в 1872 г. смешал формальдегид и "карболовую кислоту" (раствор фенола), он получил смолообразную, вязкую массу. При нагревании она превращалась в твердое, нерастворимое вещество, которое далее уже не плавилось. В то время Байер еще не мог предвидеть, какое огромное значение приобретет впоследствии полученный им продукт. Через 35 лет бельгийскому исследователю Бакеланду удалось разработать способ получения этого вещества, пригодный для промышленности. За сходство с природными смолами продукт, открытый Байером, назвали синтетической смолой.
Эта смола производится промышленностью с 1912 г. под названием бакелит. Как и ко многим другим новинкам, к бакелиту вначале относились скептически, и ему было трудно конкурировать на рынке с давно известными материалами.
Положение быстро изменилось, когда обнаружили его ценные свойства - бакелит оказался отличным электроизоляционным материалом, обладающим в то же время высокой прочностью. Сегодня у себя дома мы уже едва ли увидим штепсельные розетки, вилки и электрические выключатели из фарфора. Их вытеснили изделия из реактопластов. Бакелит и родственные ему пластмассы заняли также почетное место в машиностроении, автомобилестроении и других отраслях промышленности.

35 000 тонн фенопластов в год

К числу важнейших типов пластмасс, производящихся в ГДР, наряду с поливинилхлоридом, полиэтиленом, полиамидами и полистиролом относятся также фенопласты и аминопласты. Они принадлежат к группе реактопластов, т. е. таких пластмасс, которые при нагревании не могут изменять свою форму. Фенопласты и аминопласты получаются в результате поликонденсации. Это такой процесс, при котором молекулы различных веществ соединяются друг с другом и образуют макромолекулы, причем одновременно возникают и другие, низкомолекулярные вещества - чаще всего вода. Хотя фенопласты - старейшая разновидность пластмасс, они до сих пор отнюдь не устарели. В технологию их получения все время вносятся отдельные усовершенствования, однако в своей основе она не изменилась.
В последние годы спрос на продукцию из фенопластов резко возрос, и предприятия-изготовители - в том числе в ГДР фабрики синтетических смол и пластмасс в Эркнере и Эшпенхайне и завод имени Вальтера Ульбрихта в Лёйне - из года в год увеличивают объем производства. Скоро они смогут давать ежегодно более 35 000 тонн фенопластов.

Изготовим прозрачную фенолоформальдегидную смолу

В качестве исходных веществ возьмем 40%-ный водный раствор метаналя (формалин) и кристаллический гидроксибензол (фенол) или его метильные аналоги - крезолы. Если читателю не удастся найти кристаллический фенол, можно использовать вместо него как можно более концентрированный водный раствор фенола, то есть продажную карболовую кислоту ("карболку") Фенол вызывает на коже ожоги. Работать с ним следует в резиновых перчатках Все названные вещества ядовиты!
Чтобы ознакомиться в общих чертах с процессом образования смолы, смешаем в пробирке приблизительно 2 г кристаллического фенола (или 4 мл раствора) с 3 мл формалина и добавим 3 капли концентрированной соляной кислоты. При этом смесь самопроизвольно разогревается и, наконец, закипает. Содержимое пробирки становится стеклообразным и вязким. Тотчас стеклянной палочкой отберем пробу. При необходимости немного охладим пробирку, чтобы реакция протекала не слишком бурно.
Взятую пробу реакционной массы испытаем на растворимость в воде и спирте (денатурате) или других растворителях. Проба растворяется.
Тем временем реакция продолжается, содержимое пробирки становится очень вязким и отчасти затвердевает (по консистенции напоминает резину). Если теперь снова взять пробу, то она уже не растворяется, но при нагревании еще проявляет пластичность.
В конце опыта поставим пробирку в химический стакан с кипящей водой. Через некоторое время масса затвердевает. Разбив пробирку, мы можем достать из нее кусочек прозрачной фенолоформальдегидной смолы. Она красноватая, не растворяется и не плавится.
При выдерживании в пламени смола сгорает очень медленно, окрашивает пламя в желтый цвет, дает искры и обугливается. Горение сопровождается интенсивным запахом фенола.
Попробуем теперь разобраться, какие химические реакции происходят при выполнении этого опыта. Метаналь (формальдегид) имеет атом кислорода при двойной связи. Этот атом вместе с двумя атомами водорода фенола образует воду. За счет высвобождающихся при этом единиц валентности появляется возможность присоединения молекул фенола к остатку метаналя:

схема взаимодействия

В этих реакциях участвует множество молекул, что приводит к образованию цепей. Вначале возникают короткие цепи, и полученный полимер представляет собой смолообразное вязкое вещество, легко растворимое, например в спирте и ацетоне (наша первая проба). Этот полимер начальной стадии поликонденсации называют резолом. Дальнейшее увеличение длины цепей приводит к тому, что вещество почти полностью теряет свою растворимость в обычных растворителях и проявляет пластичность только при нагревании (вторая проба). Продукт этой стадии поликонденсации называется резитолом.
В конечном счете цепи соединяются между собой мостиками из остатков метаналя и образуют трехмерную (пространственную) сетчатую структуру:

схема строения

При этом полимер становится твердым, нерастворимым и неплавким. Этот продукт конечной стадии поликонденсации называют резитом.
При промышленной переработке смолу на стадии образования резола выливают в формы и в них отверждают. Отверждение нередко занимает несколько дней. Это необходимо для того, чтобы образующаяся при реакции вода испарялась медленно. Иначе смола получится непрозрачной и пузырчатой.
Из литых фенолоформальдегидных смол изготовляют пуговицы, рукоятки, бильярдные шары и т. д. Чтобы ускорить отверждение, можно довести поликонденсацию почти до образования резита, затем полученную смолу размолоть, поместить в формы, сжать под давлением 200-250 ат и подвергнуть отверждению при 160-170 °С.
В последующих опытах исследуем влияние на процесс поликонденсации различных условий. Если мы будем проводить эту реакцию при рН выше 7, т. е. в щелочной среде, то она сильно замедлится и ее можно будет остановить на стадии образования резола.

Фенолоформальдегидные лаки и клеи

В маленьком химическом стакане осторожно нагреем на водяной бане 10 г фенола с 15 мл формалина и 0,5 мл 30%-ного раствора гидроксида натрия (едкого натра). После длительного нагревания масса становится вязкой. Когда взятая стеклянной палочкой проба при охлаждении начнет затвердевать, прекратим нагревание и часть полученной в стакане резольной смолы перенесем в пробирку, заполненную на одну треть денатуратом или метанолом. (Осторожно! Яд!)
При этом смола растворяется. Полученным раствором мы можем лакировать мелкие металлические предметы.
Чтобы лак не был липким, его понадобится еще отвердить. Для этого лакированный предмет осторожно нагревают не выше 160 °С - током воздуха, нагретого пламенем горелки, или в сушильном шкафу. Вполне подойдет и духовка кухонной плиты.
После обжига лак надежно пристает к металлу, он стоек по отношению к кислотам и щелочам, тверд, прочен на изгиб и к удару. Такие лаки во многих отраслях промышленности заменили старые природные лаки.
Для лакировки деревянных изделий применяют самоотверждающиеся лаки. Мы можем получить вполне пригодный лак такого типа следующим образом. Поместим в химический стакан 10 г фенола, 10 мл формалина и 0,5 г этандикарбоновой, или щавелевой, кислоты (Яд!) и нагреем эту смесь на кипящей водяной бане.
Приблизительно через полчаса содержимое колбы превращается в почти бесцветную вязкую массу. Добавим 4 капли концентрированной соляной кислоты и продолжим нагревание еще некоторое время (недолго). Вскоре образуются два слоя. Верхний, водный слой мы сольем и растворим вязкий белый остаток в денатурате. Этим раствором можно лакировать деревянные предметы. Лак через 20 минут загустевает, а через 40 минут превращается в твердое блестящее покрытие.
Резольными фенолоформальдегидными смолами можно также склеивать дерево с деревом или с металлом. Сцепление получается очень прочным, и этот способ склеивания в настоящее время находит все более широкое применение, особенно в авиационной промышленности.
Изготовим теперь снова вязкотекучую резольную смолу путем нагревания смеси фенола, формалина и раствора едкого натра. Этой смолой склеим две тонкие деревянные дощечки. Для этого одну из них смажем полученной смолой, а на другую нанесем концентрированную соляную кислоту.
Зажимами плотно прижмем дощечки друг к другу, подержим несколько минут в токе горячего воздуха или в сушильном шкафу и затем дадим остыть. Соляная кислота служит в этом опыте отвердителем и превращает смолу в резит. Дощечки склеиваются очень прочно. Если с первого раза опыт не удастся, наберемся терпения и повторим его еще раз.
В промышленности склеивание смолами на основе фенола применяется при изготовлении клееной фанеры и древесноволокнистых пластиков. Кроме того, такие смолы успешно используются для изготовления щеток и кистей, а в электротехнике ими отлично склеивают стекло с металлом в лампах накаливания, люминесцентных лампах и радиолампах.
Далее каждый читатель может заняться получением фенолоформальдегидных смол самостоятельно, пробуя при этом в широких пределах изменять условия опытов. Например, можно попытаться изменить соотношение исходных веществ или подобрать другие катализаторы. В частности, вместо соляной кислоты можно взять малое количество - кристаллик размером с горошину - безводного сульфита натрия, а раствор едкого натра заменить 25 %-ным водным раствором аммиака. С сульфитом натрия образуются очень красивые плотные куски прозрачной смолы, хотя массу приходится очень долго греть (1-2 часа).

С НАПОЛНИТЕЛЕМ ПОЛУЧАЕТСЯ БОЛЬШЕ И... ЛУЧШЕ

Подавляющая часть фенопластов перерабатывается с введением добавок - наполнителей. Они могут быть как растительного или животного, так и минерального происхождения. Чаще всего применяются древесная мука, пробка, бумага, измельченные обрезки хлопчатобумажной ткани и отходы других волокон. Однако используются и минеральные наполнители: графит, глина, слюда, кизельгур, асбест и стекловолокно.
Введение наполнителей преследует три цели. Во-первых, увеличивается объем смеси, а значит материал становится дешевле. Во-вторых, наполнители улучшают механические свойства. И, наконец, в-третьих, они поглощают часть воды, которая образуется при поликонденсации. Например, смесь, используемая для изготовления различных деталей в электротехнике, рукояток инструментов и недолговременных строительных конструкций имеет такой состав:
  • Фенолоформальдегидная резольная смола 50%
  • Древесная мука 40%
  • Гексаметилентетрамин 7%
  • Оксид магния 2%
  • Стеарат магния 1%
    Оксид магния нужен для нейтрализации следов кислоты в смоле. Гексаметилентетрамин отщепляет при нагревании метаналь и аммиак и тем самым вызывает дальнейшее соединение цепей в щелочной среде с образованием полимера пространственной сетчатой структуры. Стеарат магния служит смазывающим средством - он предотвращает прилипание пластмассы к деталям аппаратов, в которых ее перерабатывают.
    В промышленности при переработке пластмассы смолу сначала размалывают, смешивают с наполнителями и тщательно разминают на обогреваемых валках. Эту обработку нужно вовремя прекратить, чтобы смола не слишком затвердела. После охлаждения смесь снова размалывают. Так получают пресс-порошок, который затем прессуют в формах при высоком давлении (200-800 ат) и при температуре около 160 °С.
    Полученные таким образом - с помощью горячего прессования - изделия хорошо известны. Это игрушки, тара, электрические выключатели, чернильные приборы, телефонные аппараты, детали радиоприемников, кино- и фотоаппаратов, детали мебели и многое другое. Из фенопластов изготовляют также детали машин.
    Например, кузов малолитражки "Трабант", выпускаемой в ГДР на заводе в Цвиккау, сделан из слоистого пластика, который наряду с крезолоформальдегидной смолой содержит отходы хлопчатобумажной пряжи, поступающие на завод с прядильных фабрик. Для получения этого пластика 65 слоев очень тонкой ткани, чередующихся со слоями размолотой смолы, спрессовывают в очень прочный материал толщиной 4 мм. Прессование осуществляется при давлении 40 атм и температуре 160 °С и занимает всего 10 мин.
    Недавно коллективу инженеров в г. Пирна (ГДР) на экспериментальном заводе искусственного волокна удалось создать новый замечательный листовой материал-легкий, прочный, устойчивый к атмосферным воздействиям в негорючий. Этот материал, содержащий наряду с крезолоформальдегидной смолой гипс и стекловолокно, назвали глакрезитом. В настоящее время в ГДР впитываются легкие и устойчивые к погоде оконные "стекла" из глакрезита. Новый материал уже оправдал надежды при строительстве домов отдыха, в кораблестроении, в машиностроении и в мебельной промышленности.

    Изготовление пресс-материала

    Самостоятельно воспроизвести в лаборатории технологию промышленного производства пластмасс нелегко. Мы ограничимся тем, что разбавим полученную нами фенолоформальдегидную смолу наполнителем и затем проведем отверждение. Вначале в железном тигле смешаем 7 частей фенола и 10 частей формалина, добавим Малое количество концентрированного раствора едкого натра и нагреем эту смесь до образования резола. Когда это состояние будет достигнуто, кока смола не затвердела, добавим к ней древесную муку и тщательно перемешаем. (Доля наполнителя в общей массе не должна превышать 50%.)
    Растерев остывшую смесь в ступке, мы получим пресс-порошок.
    Кроме того, нам понадобится некоторое количество гексаметилентетрамина. Для получения его смешаем в фарфоровой чашке 6 мл формалина (40%-ного раствора формальдегида) с 10 мл концентрированного (25%-ного) водного аммиака и осторожно упарим досуха. Поскольку температура при упаривании не должна превышать 100 °С, лучше всего упаривать на водяной бане.
    Полученные почти бесцветные кристаллы тоже измельчим и перемешаем с пресс-порошком. Затем порошок поместим в форму из железа или свинца, плотно сдавим его и отвердим при нагревании на песочной бане при 160 °С.
    Если такой формы не найдется, проведем отверждение в пробирке. В этом случае получится брусок из пластмассы. Интересно попробовать, как поддается эта пластмасса механической обработке - распиливанию, сверлению и обработке напильником.

    Изготовление слоистого пластика

    Очень эффектный опыт - изготовление слоистой пластмассы из бумаги. Эту пластмассу называют гетинаксом. Нагреем 10 г фенола с 13 мл формалина и 7,5 мл 25%-ного водного аммиака до образования вязкой массы. Смолу растворим в спирте (денатурате) и пропитаем этим раствором 20-30 полосок бумаги размером 10 X 1,5 см. Каждую полоску предварительно согнем гармошкой, сделав 5 сгибов. Листочки бумаги нанижем на проволоку и выдержим около получаса при 80 °С в сушильном шкафу или другом теплом месте. Затем наложим листочки друг на друга и крепко спрессуем между двумя по возможности гладкими металлическими пластинами (лучше всего из алюминия) толщиной около 1 мм. Можно сжать эти пластины в тисках или с помощью струбцин (винтовых зажимов).
    Отверждение происходит при температуре не ниже 150 °С за несколько часов. Лучший результат получится при выдерживании в сушильном шкафу при 150-160 °С в течение 10 часов. Затем дадим образцу медленно остыть почти до комнатной температуры и освободим зажимы. Нельзя не удивиться тому, как мало уступает полученный нами материал промышленному гетинаксу, который под различными названиями поступает в продажу. Наш слоистый пластик - твердый, он хорошо поддается обработке - распиливанию и сверлению.
    Особенно высокой прочностью обладает слоистый пластик, изготовленный на основе ткани - текстолит. Шестерни из этого материала обеспечивают бесшумную работу машин, а вкладыши подшипников отличаются долговечностью. Из текстолита делают детали тормозов для вагонов, ролики и прокладки, фрикционные колеса, а также различные электроизоляционные детали, в частности, винты и гайки для соединений, не проводящих электрический ток.
    Слоистые пластики на основе фенолоформальдегидных смол приобрели в промышленности репутацию незаменимых. Однако не так давно появились материалы, которые могут успешно конкурировать с ними. Это армированные пластмассы на основе полиэфирных смол; наполнителями в них служат жгуты из стекловолокна и стеклоткань.

    В 13 РАЗ ЛЕГЧЕ ПРОБКИ

    Пробка всегда считалась самым легким из твердых материалов. Взяв корковую пробку в руку, мы почти не ощущаем ее веса. Многих легко сбить с толку каверзным вопросом: "Сколько весит шар из пробки диаметром 2 м?" Чтобы не утруждать себя расчетом, мы, разумеется, выясним это опытным путем и пригласим посмотреть на этот интересный опыт своих друзей и знакомых. Окажется, что шар все-таки изрядно тяжелый - 800 кг! Он, конечно, будет плавать в воде, но даже самому сильному из нас едва ли удастся вытащить его из воды.
    Между тем, шар точно такого же размера из пенопласта под названием пиатерм весит всего лишь 58,6 кг. Пиатерм приблизительно в 13 раз легче пробки и в 65 раз легче воды. (В нашей стране подобный материал - отвержденная пена с ячеистой структурой - выпускается под названием мипора в виде прямоугольных блоков мелкопористой массы белого или желтого цвета. Мипора применяется в качестве теплоизоляционного материала - в средствах транспорта, в холодильных камерах, в сосудах для перевозки жидкого кислорода и т. д. Многим читателям, вероятно, знакомы другие легкие пенопласты, особенно пенополистирол и пенополиуретан. Первый используется в строительном деле для тепло- и звукоизоляции, а также для изготовления тары, поплавков и др. Из второго делают, в частности, известные всем коврики и губки. - Прим. перев.)
    На примере пиатерма мы можем познакомиться с еще одной группой реактопластов - аминопластами. Последние являются продуктами поликонденсации аминов с метаналем (формальдегидом). Пиатерм образуется из мочевины и метаналя. Он производится в ГДР на азотном заводе в Пистерице, преимущественно в виде плит, обладающих замечательной звукоизоляционной и теплоизоляционной способностью. Благодаря этому пиатерм применяют в качестве изолирующего материала, особенно в холодильной технике, для изоляции различных трубопроводов, контейнеров и др. Пиатерм выдерживает нагрузку до 1000 кгс/м2. Поэтому его можно использовать при строительстве домов в качестве прокладки под полом, чтобы не было слышно шума шагов. Использование этого материала в театрах и концертных залах позволяет существенно улучшить акустику.
    Пиатерм получается по следующей схеме: схема реакции

    Теплоизоляция

    Немного пенопласта обычно нетрудно приобрести - он используется для упаковки, украшения витрин под Новый год и для других целей.
    Испытаем его теплоизоляционную способность. В простейшем варианте возьмем два достаточно больших химических стакана разного диаметра, поставив их один в другой и пространство между ними заполним пиатермом. Если во внутренний стакан налить горячую воду, то окажется, что она очень долго не остывает. В этом мы можем убедиться с помощью термометра.

    Изготовление пенопласта

    В большой пробирке растворим 3 г мочевины в как можно более концентрированном (40%-ном) формалине. В другой пробирке смешаем 0,5 мл шампуня с 2 каплями 20%-ной соляной кислоты, добавим раствор из первой пробирки и взболтаем полученную смесь до образования обильной пены.
    Затем нагреем пробирку на слабом пламени. При этом пена затвердеет. Подождем 10 минут, снова слегка нагреем пробирку, дадим ей остыть и затем разобьем.
    Мы получим твердый белый пенопласт, правда с более крупными порами, чем у того, который производит промышленность.

    Изготовление мочевиноформальдегидной смолы

    Изготовление мочевиноформальдегидной смолы, в основном, не отличается от только что описанного опыта. Заполним пробирку на одну треть насыщенным раствором мочевины в формалине, добавим 2 капли 20%-ной соляной кислоты и нагреем смесь на малом огне до кипения. Далее она кипит самопроизвольно, в конечном счете мутнеет и быстро загустевает, приобретая консистенцию резины.
    Выдержим пробирку не менее 20 минут в кипящей водяной бане. При этом мочевиноформальдегидная смола отверждается. Разбив пробирку, мы извлечем из нее очень твердую массу - от прозрачной до почти белой.
    Мочевиноформальдегидные пластики служат для изготовления товаров бытового назначения - посуды, рукояток, пуговиц, футляров и т. п. Если эти смолы получать в нейтральной среде, то конденсация останавливается на стадии резола. Полученная при этом сиропообразная масса растворима в воде. Этот раствор известен как синтетический карбамидный клей (В нашей стране клай марки К-17 и др. - Прим. перев).

    Приготовим карбамидный клей

    В круглодонной колбе, в которую вставлен обратный холодильник, на малом огне нагреем до кипения смесь 15 г мочевины, 25 г 30%-ного формалина и 3 капель концентрированного раствора едкого натра. Через 15 минут нагревание прекратим и посмотрим, стала ли масса вязкой. Если это состояние достигнуто, то разбавим ее очень малым количеством воды. Полученной массой густо намажем одну сторону деревянной дощечки, а другую дощечку пропитаем отвердителем.
    Проведем три опыта: испытаем в качестве отвердителя соляную и метановую (муравьиную) кислоты, а также концентрированный раствор хлорида аммония. При использовании хлорида аммония клей не следует наносить слишком густым слоем. Хлорид аммония при нагревании разлагается, образуя хлористый водород и аммиак. Это приводит к появлению трещин и расклеивайте.
    Образцы нужно плотно сжать друг с другом. Склеивание длится 15-20 часов. Процесс можно ускорить - нагревать образцы не менее 30 минут при 80-100 °С. В лаборатории для этого лучше всего использовать сушильный шкаф, но можно провести опыт и дома, заменив шкаф другим источником нагревания.
    Карбамидный клей хорошо подходит для склеивания слоистой древесины, фанеры, фибры, изготовления моделей и т. п. Важнейшим свойством полученных клеевых соединений является их стойкость по отношению к холодной и горячей воде.

    ТАРЕЛКИ ДЛЯ НАЧИНАЮЩИХ ЖОНГЛЕРОВ

    Мы не раз восхищались искусством жонглеров, удерживающих в равновесии на длинных бамбуковых шестах вращающиеся тарелки. Вот бы и нам так! Прежде чем выходить на сцену, придется потренироваться дома. Но, увы, уже через несколько секунд первая тарелка превратится в осколки. Следующие тарелки ожидает та же печальная участь. Хорошо было бы иметь небьющиеся тарелки! И достать их теперь нетрудно: уже несколько лет такие тарелки, а также чашки и бидоны из меладура - пластмассы, относящейся к аминопластам - производится в ГДР. (В нашей стране подобная пластмасса выпускается под названием меланит. - Прим. перев.)
    Такая посуда не боится ударов, не имеет запаха и вкуса и выдерживает кипячение. Кроме того, она легкая - плоская тарелка диаметром 234 мм весит всего 265 г, тогда как фаянсовая тарелка такого же размера - 480 г. Это не только облегчает труд работников обычных столовых, но особенно удобно для всех едущих, плывущих и летящих кухонь и ресторанов - в поездах, на кораблях и самолетах. Кроме того, меладур плохо проводит тепло, и поэтому пища в нем долго остается горячей.
    Меладур успешно используется и для изготовления предметов домашнего обихода, игрушек, канцелярских товаров, санитарно-технического оборудования, дверных ручек, для отделки мебели, а также для изготовления электротехнических деталей.
    Если кусочек такой смолы внести в пламя, то запахнет аммиаком, метаналем и как будто рыбой. Это подтверждает, что мы, действительно, имеем дело с аминопластом.

    СЕМЬЯ ТЕРМОПЛАСТОВ

    Пластмассам можно придавать требуемую форму самыми разнообразными способами. Их можно отливать и прессовать, прокатывать и протягивать, выдувать и вспенивать, прясть, сваривать и склеивать. Пластмассы хорошо поддаются механической обработке - их можно строгать, фрезеровать, обтачивать и сверлить.
    Химики открывают все новые типы пластмасс, а это требует от инженеров и техников создания новых машин для их переработки. При этом приходится в каждом случае учитывать особенности пластмасс, природу входящих в них наполнителей, пластификаторов, стабилизаторов и других добавок.
    При переработке термопластов очень важен правильный температурный режим. Мы знаем, что термопласты при нагревании переходят в пластическое состояние, а при охлаждении снова затвердевают, причем эту операцию можно повторять сколько угодно раз. Однако при слишком сильном нагревании они разлагаются, поэтому соответствующие машины обязательно должны быть снабжены приборами для измерения и автоматического регулирования температуры.
    Обычно термопласты перерабатывают с помощью экструдеров (червячных прессов), каландров и

    машин для литья под давлением. схема экструдера

    СОБЕРЕМ И РАЗБЕРЕМ МОЛЕКУЛЫ ПОЛИСТИРОЛА

    Катушки, кассеты и бобины для магнитофонной ленты, цоколи радиоламп, облицовочные плиты, шкалы приборов, скобы и хомуты для крепления кабелей, аккумуляторные банки, ручки инструментов и приборов, пленки, абажуры, детали клемм, футляры, принадлежности для бритья, игрушки, посуда, плитки для отделки мебели, пудреницы, крышки для банок и бутылок, коробки, детали электрических выключателей, авторучки...- этот перечень изделий из полистирола можно было бы продолжать еще долго. Применение полистирола очень разнообразно - от пленки в конденсаторах толщиной 0,02 мм до толстых плит из пенополистирола, используемых в качестве изоляционного материала в холодильной технике.
    Для следующих опытов нам понадобится кусочек по возможности неокрашенного полистирола. Вероятно, где-нибудь дома или во дворе удастся найти расколотую пластмассовую мисочку, кружку, салатник или кассету от магнитофонной пленки. Правда, мы не знаем точно, сделана ли эта вещь именно из полистирола, но это можно быстро проверить с помощью пробы на сгорание. Для полистирола характерно коптящее пламя с цветочным сладковатым запахом (Этот запах корицы обычно можно обнаружить, уколов исследуемый предмет раскаленной иглой - Прим. перев.). Если к тому же предмет падает на пол с металлическим звоном, то скорее всего он нам подойдет.
    Как мы уже знаем, все полимеры образуются из мономеров. Термопласты получаются в результате реакции полимеризации.
    Полимеризацией называют процесс соединения многих молекул, содержащих кратные связи, в одну большую молекулу (макромолекулу). В отличие от поликонденсации при этом не образуется побочных низкомолекулярных продуктов. Некоторые полимеры, например полистирол и полиметилметакрилат (органическое стекло), можно превратить обратно в мономеры. Такое превращение называется деполимеризацией. Этой реакцией мы теперь и займемся.

    Деполимеризация полистирола

    схема установки Возьмем круглодонную колбу на 0,5 л и холодильник и соберем простой прибор для перегонки. Пробки обмотаем алюминиевой фольгой. Если потребуется присоединять друг к другу стеклянные трубки, соединим их вплотную. Можно провести опыт и проще. Для этого вместо колбы возьмем по возможности большую пробирку и закрепим ее в штативе наклонно. Затем согнем длинную стеклянную трубку под углом 120°, так чтобы одно ее колено получилось длиной 4 см, а другое - 40 см. Вставим эту трубку в пробирку коротким коленом, используя либо корковую пробку, либо резиновую, обмотанную алюминиевой фольгой. Для конденсации паров мономера достаточно будет воздушного охлаждения. Полученные капли мономера соберем в другую пробирку.
    В колбу поместим 50 г полистирола в виде кусочков и осторожно, передвигая горелку, равномерно нагреем колбу. Когда полимер начнет плавиться, можно нагревать сильнее. Полистирол закипает с образованием белых паров, и из холодильника в приемник стекает по каплям вначале желтоватая, а затем бесцветная, прозрачная, как вода, жидкость. Это стирол - мономер, который, однако, содержит также примеси димера и тримера стирола, то есть продуктов присоединения друг к другу двух или трех его молекул. Последние кипят при 310 °С и выше.
    Через 1,5-2 часа мы получим около 35 г жидкости, то есть выход составляет 70 % по отношению к исходному количеству полистирола. Прекратим опыт, дадим остыть и ополоснем все части прибора бензолом. (Бензол огнеопасен и ядовит!)
    Тем, кто хорошо обеспечен химической посудой, следует иметь в виду, что деполимеризацию, которая происходит при 300-400 °С, можно также проводить в приборе на шлифах под вакуумом приблизительно 2 мм рт. ст. Однако правильное обращение с установкой, которая находится под вакуумом, требует большого опыта работы в лаборатории. Прибор должен быть собран безупречно, иначе может случиться взрыв.
    Образующийся мономер очищают, перегоняя его еще раз с добавлением нескольких крупинок серы в качестве стабилизатора.

    Получение полистирола

    Полученную прозрачную жидкость - стирол - снова превратим в полистирол. Для полимеризации понадобятся нагревание и катализатор. В промышленности в качестве катализатора применяют перекись бензоила в количестве 0,1-0,5% от массы мономера и проводят полимеризацию при 80-100 °С. (Осторожно! Сухая перекись бензоила - взрывчатое вещество. Поэтому ее обычно используют в увлажненном состоянии.)
    Если удастся достать перекись бензоила, то проведем опыт следующим образом. В шесть пробирок нальем равные количества стирола - по 5-10 г в каждую пробирку - и затем добавим катализатор в возрастающих количествах - 0; 0,05; 0,10; 0,15; 0,20 и 1% (масс.). Содержимое пробирок нужно перемешать и выдержать их в сушильном шкафу при 80 °С в течение 24-62 часов.
    Если же перекиси бензоила нет, то можно провести опыт иначе. В колбу на 100 мл вставим обратный холодильник (можно использовать посуду на шлифах или вставить холодильник в пробку, обмотанную алюминиевой фольгой) и нагреем в ней 30 г стирола и 10 мл 30%-ного раствора пероксида (перекиси) водорода. При необходимости можно позднее добавить через холодильник еще немного пероксида водорода. Колбу нужно греть горелкой через асбестированную сетку или на песочной бане в течение нескольких часов. Масса постепенно будет становиться все более вязкой и, наконец, при охлаждении затвердеет. Чтобы извлечь ее из колбы, придется либо снова ее расплавить и вылить в чашку, либо экстрагировать ее бензолом, либо разбить колбу.
    Определим температуру размягчения и плотность полученного полистирола, исследуем его растворимость и поведение по отношению к различным химическим реактивам. Полистирол растворяется в ацетоне, эфире, тетрахлорметане (четыреххлористом углероде), бензоле и метилбензоле (толуоле). Он неустойчив по отношению к концентрированной серной кислоте, с другими же кислотами, а также со щелочами не реагирует. Куски полистирола легко можно прочно склеить. Для этого смочим склеиваемые поверхности бензолом или другими растворителями, плотно сожмем и выдержим под небольшим давлением.
    Итак, мы познакомились с основными свойствами полистирола. Остается еще разобраться в том, как собственно происходит полимеризация стирола. Процесс состоит из трех стадий. Вначале в некоторых из многих молекул, содержащихся в реакционном сосуде, благодаря повышенной температуре и присутствию катализатора расщепляются двойные связи. Иными словами, эти молекулы активируются (первая стадия полимеризации):

    схема реакции

    Затем активные частицы активируют следующие молекулы стирола II соединяются с ними, образуя цепь (следующая стадия):

    схема реакции

    Рост цепи прекращается, если соединяются две растущие цепи или если к растущей цепи присоединяется другой остаток, например фрагмент катализатора. Эта стадия называется обрывом цепи:

    схема реакции

    Упрощенная формула полистирола имеет вид:

    строение полистирола

    Разумеется, мы не сможем изобразить все полученные цепные молекулы. Но в этом и нет необходимости. Достаточно лишь указать основное звено цепи и степень полимеризации n. Изменяя условия полимеризации, мы можем регулировать величину n. При высоких температурах полимеризация происходит очень быстро с образованием коротких цепей, и полимер получается хрупким. В промышленности требуется высокая степень полимеризации.
    В ГДР полистирол производится на комбинате синтетического каучука, к которому относятся заводы в Шкопау, Аммендорфе и Рюбеланде. Только на главном предприятии в Шкопау работает 20 000 человек. Этот комбинат является крупнейшим в ГДР поставщиком химической продукции для экспорта.
    Технология там основана пока, главным образом, на использовании карбида, однако в ближайшие годы благодаря сырью из других социалистических стран все большая доля исходного мономера будет получаться из нефти.

    ПОЛИВИНИЛХЛОРИД - ВАЖНЕЙШАЯ ПЛАСТМАССА

    Месторождения цветных металлов на Земле, и раньше не такие уж богатые, быстро исчерпываются. Между тем, их потребление все время растет в связи с ростом машиностроения и вообще с развитием техники. Эту диспропорцию помогают устранить пластмассы.
    Слово поливинилхлорид в наши дни можно услышать очень часто. Например, во многих отраслях химической промышленности он вытеснил свинец. Из него изготовляют крупные детали контактных аппаратов для производства серной кислоты. Кроме того, поливинилхлорид успешно применяется в строительном деле (Из него делают покрытия для полов, гибкие трубы, пластины и блоки для тепло- и звукоизоляции - Прим. перев.).
    Скоро уйдут в прошлое водосточные желоба и трубы, вентиляционные трубы из листового оцинкованного железа. После того как в результате добавления пластификатора - диалкилфосфонстеарата - удалось довести морозостойкость поливинилхлорида до -45 °С, этот материал приобрел множество новых почитателей.
    схема реакции
    В ГДР поливинилхлорид занимает первое место среди всех пластмасс (В нашей стране по объему производства поливинилхлорид занимает среди пластмасс второе место, уступая только полиолефинам - полиэтилену и др. - Прим. перев.).
    Он выпускается, главным образом, на комбинате синтетического бутадиенового каучука в Шкопау и на химических заводах в Биттерфельде и Эйленбурге. Сырья для его производства сколько угодно - это вода, известняк, уголь и поваренная соль.
    Многообразные возможности применения поливинилхлорида в достаточной мере используются лишь в последние годы, хотя этот полимер известен давно. В 1912 г. Клатте разработал основы технологии его производства, в 1926 г. он впервые был изготовлен в промышленности, а с 1934 г. в Германии началось его производство в крупных масштабах в Бительсфельде, Шкопау и Людвигсхафене.

    Опыты с поливинилхлоридом

    схема установки
    Для опытов с поливинилхлоридом мы наверняка найдем достаточное количество материала. Нам понадобится несколько полосок жесткого поливинилхлорида (винипласта). Их можно нарезать, например, из плиток для покрытия пола. Еще легче найти дома мягкий поливинилхлорид (пластикат) - в виде порванной скатерти, плаща или накидки, занавески для ванны и т. д.
    Вначале посмотрим, как ведет себя поливинилхлорид при нагревании и при обработке кислотами, щелочами и органическими растворителями. Кроме того, попробуем соединить друг с другом кусочки поливинилхлорида с помощью сварки.
    Для сварки горячим воздухом нам понадобится "сварочный пруток", который мы изготовим, нарезав тонкие полоски из поливинилхлоридной пленки. На стыке двух кусков поливинилхлорида напильником выточим бороздку для сварочного шва, так чтобы в разрезе она имела форму латинской буквы V (см рисунок). Закрепим оба куска на дощечке, поместим "сварочный пруток" в бороздку для шва и обработаем линию сваривания током горячего воздуха из паяльной трубки, используя для нагревания воздуха горелку Бунзена или паяльную горелку. При отсутствии воздуходувки можно продувать воздух ртом.
    Для контактной сварки возьмем нагретый до 250 °С металлический стержень, например паяльник, и проведем им между двумя наложенными друг на друга полосками поливинилхлоридной пленки. Размягченные места плотно прижмем друг к другу с помощью деревянной скалки или валков для отжима белья в стиральной машине. Если достаточно потренироваться, то мы вскоре в совершенстве овладеем техникой переработки поливинилхлорида. Эти навыки пригодятся при изготовлении простых приборов, необходимых для оснащения лаборатории (штативов для маленьких пробирок и пипеток и т. п.).

    ОРГАНИЧЕСКОЕ СТЕКЛО

    Что такое стекло? Короткий и четкий ответ мы можем найти в энциклопедическом словаре: "Стекло - изготовленный в результате плавления хрупкий и прозрачный материал, состоящий из оксида кремния SiO2 и окислов металлов".
    Обычное стекло - это неорганический материал. Замечательным свойством этого материала является его высокая светопроницаемость. Однако стекло трудно перерабатывать, и оно слишком легко бьется. Этих недостатков не имеет органическое стекло, о котором пойдет речь дальше. Строго говоря, это вообще не стекло, а один из термопластов - полиметилметакрилат (полимер метилового эфира метакриловой кислоты). Оно хорошо пропускает не только видимый свет, но и ультрафиолетовые лучи.
    Открытый немецким химиком Бауэром в Дармштадте, этот полимер под названием плексиглас или органическое стекло в виде листов и блоков поступил в продажу и вскоре стал незаменимым материалом во многих отраслях промышленности. В ГДР он некоторое время был дефицитным, но в наши дни положение изменилось. На азотном заводе в г. Пистерице органическое стекло производится по последнему слову техники. Это стекло поступает в продажу под названием пиакрил-Р и отличается прежде всего легкостью, с которой оно поддается формованию, а также малой плотностью, высокой светопроницаемостью и прочностью. Оно применяется в машиностроении, авиастроении, вагоностроении и судостроении, для изготовления деталей оптических приборов, моделей, для оформления витрин, вывесок и т. д. Рифленое органическое стекло служит для остекления железнодорожных вагонов. Применение пиакрила позволяет ГДР сэкономить значительные средства.
    Перечисленные области применения органического стекла далеко не исчерпывают всех его возможностей. Из него делают зубные протезы. Сейчас проводятся опыты по использованию органического стекла в качестве заменителя кости. В будущем органическое стекло, несомненно, найдет еще немало новых интересных областей применения.

    Читать сначала >>> || Содержание книги || Читать дальше >>>

    Читальный зал кунсткамеры: что тут есть?


     


  • Рассылки Subscribe.Ru
    Алхимик - новости и советы