Поиск:  




Кунсткамера

Читальный зал

Гроссе Э., Вайсмантель X.

Химия для любознательных. Основы химии и занимательные опыты.

Глава 2. СОЛЬ = ОСНОВАНИЕ + КИСЛОТА

ХЛОРИДЫ ЩЕЛОЧНЫХ МЕТАЛЛОВ -- СЫРЬЕ ДЛЯ ПОЛУЧЕНИЯ ОСНОВАНИЙ И КИСЛОТ

Еще в древности арабы получали соли выщелачиванием из золы растений. От арабского слова al kalija ("собранный из золы растений") происходит название щелочей во многих европейских языках, в частности, в английском (alkali) и французском (alcali). В связи с этим мы и сегодня называем такие мeтaллы, как литий, натрий, калий, рубидий, цезий щелочными. Их соединения с хлором - хлориды щелочных металлов - растворены в морской воде и частично находятся в крупных, имеющих промышленное значение месторождениях на суше.
ГДР располагает значительными месторождениями каменной и калийной соли. Соли являются важнейшим сырьем для xимической промышленности страны и экспортируются; с давних времен у многих народов соль была предметом торговли.
так образуются солевые месторождения В специальных бассейнах ее добывали из морской воды жители прибрежных районов теплых стран, а горняки разрабатывали те залежи, которые были легкодоступны. В течение многих веков растворы солей (рассолы) выкачивали с большой глубины и перерабатывали на солеварнях в пищевую соль. В 1816 г в Германии с помощью буровых скважин были обнаружены первые залежи каменной соли. В 1839 г. в Штасфурте, тогдашнем центре солеразработки в Германии, было начато бурение, которое длилось четыре года.
В пределах ГДР соли добывают в четырех больших областях: у Магдебурга-Хальберштадта (Шёнебек, Штасфурт, Ашерслебен и Берибург), в Южных горах (Бишоффероде, Бляйшероде, Зондерсхаузен, Пётен, Волькенроде), в области Верры (калийный комбинат Верра, Меркерс, крупнейший в Европе производитель калийных продуктов) и вдоль Унштрут (Росслебен). Залежи каменной и калийной соли возникли в результате испарения морской воды. Судя по толщине залежей в месторождениях (у Штасфурта толщина солевого пласта 1170 м), мы можем сделать вывод, что речь идет не об одноразовом испарении морского бассейна. Вероятно, бассейны, в которых 200 миллионов лет назад происходило осаждение, были отделены от океана только полосой мели и периодически снова заполнялись. Благодаря постепенному испарению воды под влиянием господствовавшего в Центральной Европе в далеком прошлом сухого тропического климата, концентрация солей постепенно увеличивалась. В конце концов соли стали выпадать в осадок в соответствии с их растворимостью: сначала кальцит и ангидрит, затем каменная соль.
Легкорастворимые соединения калия и магния выкристаллизовались относительно поздно. Сверху были нанесены тонкие слои глины, которые защитили соли от повторного растворения. Последующие наводнения, осаждения, подъемы и сдвиги почвы придали месторождениям их сегодняшние форму и положение.
Этот грандиозный процесс мы можем повторить теперь в небольшом объеме. Сначала приготовим 25 мл насыщенного раствора гипса и растворим в нем 1 г хлорида натрия и 0,5 г хлорида калия. После добавки 1 капли разбавленной соляной кислоты (20%-ной) будем прибавлять раствор хлорида железа(III) до тех пор пока раствор не приобретет слабую желтую окраску.
Осторожно выпарим досуха на часовом стекле несколько капель приготовленного раствора. Для этого поставим часовое стекло на асбестированную проволочную сетку и осторожно нагреем с помощью пламени бунзеновской горелки или спиртовки.
Через лупу на нашем часовом стекле можно разглядеть, что сначала, по краю стекла, выделился сульфат калия, затем следует полоска хлорида натрия, а бесцветные прозрачные кубики в середине стекла - это кристаллы хлорида калия.

КАК В БИТТЕРФЕЛЬДЕ ПОЛУЧАЮТ ЩЕЛОЧЬ И КИСЛОТЫ

Что такое поваренная соль? Она представляет собой соединение химически активного, требующего осторожного обращения щелочного металла натрия с чрезвычайно ядовитым хлором. Это соединение можно получить, если в течение длительного времени в хорошо закрытом сосуде воздействовать газообразным хлором на кусочки натрия. Как мы знаем, поступающая в продажу поваренная соль не ядовита, так как при соединении веществ друг с другом их исходные свойства не проявляются. Она состоит, как все простые соли, из иона металла и кислотного остатка, которые находятся в водном растворе в виде свободных подвижных ионов:

NaCl = Na+ + Сl--

Но это еще не все компоненты раствора: вода также может диссоциировать на ионы водорода Н+ и гидроксил-ионы ОН--:

2О = 2Н+ +2ОН--

Ионы водорода образуют с недиссоциированными молекулами воды ионы гидроксония Н3О+:

+ + 2Н2О <здесь знак обратимости> 2Н3О+

В электролизной ячейке, на катоде они разряжаются, присоединяя электроны. При этом выделяется

водород: 2Н3О+ + 2е-- = 2H2O + Н2

Гидроксил-ионы остаются неизменными в растворе. На аноде электролизной ячейки, заполненной водным раствором поваренной соли, хлорид-ионы отдают электроны и разряжаются. При этом выделяется газообразный хлор:

2С1-- = 2e-- + Сl2

Следовательно, в растворе останутся ионы натрия и гидроксида, которые при выпаривании раствора соединяются, образуя гидроксид натрия NaOH.
Это только грубая схема процесса. В действительности его механизм намного сложнее и до настоящего времени еще полностью не выяснен.
Если описанный процесс будет протекать в одном и том же сосуде, то между гидроксидом натрия и выделяющимся хлором произойдет реакция. Щелочь будет загрязнена, а многим отраслям производства необходима щелочь высокой чистоты. Понадобилось разработать способ, при котором хлор не находится вблизи катода, а это значит, что катодное и анодное пространства должны быть разделены. Существуют три метода, в которых это требование учтено: с колоколом, диафрагменный и ртутный. Здесь мы рассмотрим прежде всего последний способ, который наиболее распространен в ГДР и в частности применяется на химическом комбинате в Биттерфельде и химическом заводе в Нюнхрице.
Сущность способа заключается в том, что катодом является жидкая ртуть, которая медленно течет в слегка наклоненной электролизной ячейке. При равновесном напряжении от 2,8 до 4,4 В протекают все описанные выше процессы, только на этот раз при особых условиях разряжаются также ионы натрия. Натрий поглощается при этом на катоде ртутью, и образуется примерно 0,2%-ная амальгама натрия. (Амальгамы - это сплавы металлов с ртутью.) Она вытекает из ячейки в аппарат для разложения, где при действии воды натрий превращается в 40%-ный раствор гидроксида натрия:

амальгама натрия + 2Н2О = 2NaOH + ртуть + Н2

Ртуть откачивается назад, в ячейку. Водород накапливают в газометре. Частично он сгорает при контакте с хлором, собирающемся на графитовом аноде. В результате образуется хлороводород:

Н2 + Сl2 = 2НСl

В так называемом абсорбере хлороводород растворяется в воде и получается высококонцентрированная соляная кислота. Большую часть хлора собирают и сжижают. Химический комбинат в Бпттерфельде сам потребляет хлор в больших количествах: он производит многочисленные неорганические и органические хлорсодержащие соединения. К ним относятся тетрахлорметан (четыреххлористый углерод), инсектициды, гербициды, отбеливающие средства, хлорная известь, пластики (например ПВХ) и другие вещества и материалы. Это только незначительная часть из 2800 ходовых продуктов, которые производятся почти на 70 предприятиях комбината.
Большое количество химически чистого водорода применяется для гидрогенизации жиров и масел, для резки и сварки и в качестве газообразного топлива. На известной фабрике драгоценных камней химического комбината Биттерфельда в шамотных печах из очищенного глинозема с некоторыми добавками получают синтетические камни. Нужную температуру (2000 °С) создают с помощью кислородно-водородной горелки.
Используя десятилетний опыт выращивания кристаллов, на комбинате удалось вырастить рубиновые стержни, которые применяют в последнее время в качестве лазер-резонаторов в оптических приборах.
От 400 до 600 кг хлора, от 10 до 16 кг водорода и от 450 до 750 кг едкого натра (в пересчете на 100%-ную щелочь) может производить в день одна ячейка при потреблении около 3 кВтч электроэнергии на килограмм 100%-ного NaOH.
Электролиз растворов хлоридов щелочных металлов ртутным способом известен с 1935 г. Он является типичным примером многостороннего использования энергии и сырья в современной химической промышленности.
Сначала хлор был нежелательным побочным продуктом. С ростом производства искусственных волокон и пластмасс спрос на него определил развитие процесса электролиза. Сегодня удовлетворить потребность промышленности в хлоре уже нелегко.
В то же время еще несколько лет назад едкий натр получали "каустированием" соды:

Na2CO3 + Са(ОН)2 = 2NaOH + CaCO3

Во многих странах сейчас уже идут другим путем и получают соду из каустика. Фабрика по производству едкого натра на химическом комбинате Биттельфельда была отстроена в 1950 г. и расширена в последующие годы. В 1966 г. имеющиеся на комбинате ртутные ячейки при нагрузке 50 000-100 000 A производили продуктов вдвое больше, чем было указано выше.

ЭЛЕКТРОХИМИЧЕСКИЙ КОМБИНАТ НА ЛАБОРАТОРНОМ СТОЛЕ

Попытаемся с помощью нескольких простых опытов в принципе повторить процесс, описанный в предыдущей главе. Точная копия ртутного способа невозможна в простых лабораторных условиях. Опишем простой опыт для членов кружка, которые должны работать со ртутью только под руководством специалиста.
Прежде всего несколько необходимых правил работы со ртутью. Ртуть испаряется уже при комнатной температуре. Пары ее представляют собой коварный и опасный яд, так как они легко поглощаются телом и вызывают болезни десен, выпадение зубов и волос, разрушение дыхательных путей и другие неприятные явления.
Аппараты, в которых работают со ртутью, всегда должны стоять в чашке, например в фотографической кювете. Только так можно предотвратить попадание ртути на стол и пол при появлении в аппарате трещин. Если это уже произошло, то нужно аккуратно собрать маленькие шарики. Чаще всего это делают щипцами для собирания ртути. Попавшую в пазы ртуть удаляют оловянной фольгой или полоской цинковой жести, которые предварительно надо зачистить наждаком.

Ртутный способ

С самого начала надо привыкать работать с малыми количествами веществ (это экономит химикаты и время и приучает к точности). Поэтому выберем несколько небольших сосудов, применяемых, например, для полумикроанализа.
Возьмем маленькие фарфоровые тигли (высотой 1,5 см). В один из них нальем немного ртути. Затем поставим его в химический стакан на 50 мл, который на 3/4 наполним концентрированным раствором поваренной соли. Стакан поставим в плоскую чашку или кювету.
Теперь нужны два электрода. Анод должен быть графитовый, так как на нем выделяется химически активный хлор. электролизер Воспользуемся угольным стержнем от батарейки для карманного фонарика или сделаем графитовый стержень. Катодом может служить вязальная спица, которую надо заплавить в стеклянную трубку так, чтобы с одной стороны торчал кончик длиной 1,5-2 мм (см. рисунок). Этим концом погрузим катод в ртуть (стеклянная трубка также должна смачиваться ртутью).
Теперь можно включить цепь постоянного тока. Удобнее всего работать с напряжением 12 В (аккумулятор), поддерживая в течение 3-5 мин ток 1 А. Работайте без страха, ведь так же протекает процесс в батарее карманного фонарика!
Конечно, в цепь желательно ввести переменное сопротивление и амперметр.
Мы заметим, что на угольном стержне образуются мелкие пузырьки газа, в котором легко узнать хлор - и по запаху, и с помощью влажной крахмальной бумажки, смоченной иодидом калия (посинение). На катоде, если ртуть чистая, ничего не наблюдается.
Через некоторое время прекратим подачу тока и пинцетом или тигельными щипцами вытащим тигель из стакана. Осторожно сольем раствор поваренной соли, находящийся в тигле над ртутью. Оставшиеся капли высушим полоской фильтровальной бумаги. Затем наполним тигель до середины дистиллированной водой, которую также быстро сольем и вновь высушим ртуть. Таким образом, мы удалим оставшиеся на ртути следы поваренной соли.
Выльем ртуть в маленькую пробирку (через воронку!) и нальем в нее примерно 3 мл дистиллированной воды. Через некоторое время на поверхности ртути начнут выделяться пузырьки газа. Как уже упоминалось, мы имеем дело не с чистой ртутью, а с амальгамой натрия, которая при соприкосновении с водой образует гидроксид натрия, в то время как водород улетучивается.
Отберем пипеткой пробу жидкости и подействуем на нее одним из индикаторов - лакмусом, фенолфталеином или метиловым оранжевым. Красная лакмусовая бумажка в основной среде посинеет, бесцветный спиртовой раствор фенолфталеина сильно покраснеет, а раствор метилового оранжевого приобретет желтую окраску.
Для получения кислой среды (проверим с помощью лакмуса) добавим к другой пробе того же раствора разбавленную азотную кислоту и затем несколько капель раствора нитрата серебра. Если осадок не выпадет, то это означает, что полученный едкий натр не загрязнен хлором. В противном случае образуется белый осадок хлорида серебра:

Ag+ + Сl- = AgCl↓

Хлорид серебра растворяется при добавлении нескольких капель концентрированного водного раствора аммиака, в результате образуется хорошо растворимый хлорид диамминсеребра(I);

AgCl + 2NH3 = [Ag(NH3)2]Сl

После окончания опыта все сосуды хорошо вымоем. Еще раз промоем водой ртуть и поместим ее в хорошо закрывающуюся склянку.

Диафрагма из выеденного яйца

Значительная часть едкого натра получается в промышленности по диафрагменному способу. Пористая перегородка - диафрагма - должна полностью исключить перемешивание жидкости катодного и анодного пространства, но не мешать передвижению ионов.
В промышленности в качестве диафрагм применяют асбестовый картон, асбестовую бумагу или пропитанную сульфатом бария асбестовую вату. Иногда диафрагму получают также из портланд-цемента и раствора поваренной соли. Если после затвердевания цемента провести выщелачивание, то кристаллы соли растворятся, и, таким образом, возникнут мелкие поры.
схема опыта Для нашего опыта с успехом может быть применена яичная скорлупа. Промоем ее вначале разбавленной соляной кислотой, а затем - многократно водой. Подвесим скорлупу в держателе из толстой изолированной проволоки на стенку не слишком маленького химического стакана и заполним скорлупу и стакан концентрированным раствором поваренной соли. В яйцо погрузим анод - угольный стержень, а в качестве катода используем железную проволоку, свернутую спиралью.
Примерно через пять минут после начала электролиза, проводимого при напряжении 6-12 В и токе 0,5-1 А, отберем первую пробу и проверим основность среды, как мы это делали в предыдущем опыте. Еще через пять минут прекратим опыт. Из катодного пространства возьмем примерно 20 мл полученной щелочи, а к остатку добавим каплю раствора фенолфталеина. Интенсивная красная окраска - показатель успешного опыта. Если капнуть фенолфталеин в скорлупу, цвет не изменится, зато растворы иодида калия и крахмала окрасятся в голубой цвет.
В технике 10-15%-ный раствор едкого натра выпаривают в вакуумных аппаратах. При упаривании выпадает твердый хлорид натрия, который отделяют фильтрованием.

Читать сначала >>> || Содержание книги || Читать дальше >>>

Читальный зал кунсткамеры: что тут есть?


 


Рассылки Subscribe.Ru
Алхимик - новости и советы