Комплексные
|
Глава 6. Квантовомеханические теории строения комплексных соединений
6.1. Теория валентных связей
Теоретические представления о природе комплексообразования возникли из попыток дать объяснение химическому взаимодействию устойчивых молекул с ионами и атомами различных элементов – например, молекулы иода с иодид-ионом, молекулы монооксида углерода с атомами железа, кобальта, никеля и т.п.
Одновременно шел поиск причин заметной неспецифичности таких взаимодействий, в результате чего оказываются прочно связаны между собой и ионы, и атомы, и молекулы. Например, в хлориде дихлороакватриамминкобальта(III) Химические связи в комплексных (координационных) соединениях отличаются большим разнообразием, что обусловлено всевозможными сочетаниями ковалентных связей разной полярности, кратности и степени делокализации электронных пар.
В свое время было предложено много различных теорий связи в координационных соединениях, но значительная часть этих теорий уже стала достоянием истории. В настоящем разделе рассматриваются основные понятия только теории валентных связей (метода валентных связей) и теории кристаллического поля.
Теория валентных связей была первой из квантовомеханических теорий, использованной для приближенного объяснения характера химических связей в комплексных соединениях. В основе ее применения лежала идея о донорно-акцепторном механизме образования ковалентных связей между лигандом и комплексообразователем. Лиганд считается донорной частицей, способной передать пару электронов акцептору – комплексообразователю, предоставляющему для образования связи свободные квантовые ячейки (атомные орбитали) своих энергетических уровней. Для образования ковалентных связей между комплексообразователем и лигандами необходимо, чтобы вакантные s-, p- или d-атомные орбитали комплексообразователя подверглись гибридизации определенного типа. Гибридные орбитали занимают в пространстве определенное положение, причем их число соответствует координационному числу комплексообразователя. При этом часто происходит объединение неспаренных электронов комплексообразователя в пары, что позволяет высвободить некоторое число квантовых ячеек – атомных орбиталей, которые затем участвуют в гибридизации и образовании химических связей. Неподеленные пары электронов лигандов взаимодействуют с гибридными орбиталями комплексообразователя, и происходит перекрывание соответствующих орбиталей комплексообразователя и лиганда с появлением в межъядерном пространстве повышенной электронной плотности. Электронные пары комплексообразователя, в свою очередь, взаимодействуют с вакантными атомными орбиталями лиганда, упрочняя связь по дативному механизму. Таким образом, химическая связь в комплексных соединениях является обычной ковалентной связью, достаточной прочной и энергетически выгодной. Электронные пары, находящиеся на гибридных орбиталях комплексообразователя, стремятся занять в пространстве такое положение, при котором их взаимное отталкивание будет минимально. Это приводит к тому, что структура комплексных ионов и молекул оказывается в определенной зависимости от типа гибридизации. Рассмотрим образование некоторых комплексов с позиций теории валентных связей. Прежде всего отметим, что валентные орбитали атомов комплексообразователей близки по энергии: E(n-1)d » Ens » Enp » End
Например, катион [Zn(NH3)4]2+ включает комплексообразователь цинк(II). Электронная оболочка этого условного иона имеет формулу [Ar] 3d10 4s0 4p0 и может быть условно изображена так: Вакантные 4s- и 4p-орбитали атома цинка(II) образуют четыре sp3-гибридные орбитали, ориентированные к вершинам тетраэдра. Поскольку в ионе Тетрахлороманганат(II)-ион [MnCl4]2- содержит пять неспаренных электронов на 3d-орбитали и вакантные 4s- и 4p-орбитали. Вакантные орбитали образуют sp3-гибридные орбитали, которые перекрываются с p-атомными орбиталями хлорид-ионов: Полученный таким образом тетраэдрический ион 6.2. Гибридизация орбиталей и структура комплексов Применяя обычный алгоритм предсказания типа гибридизации атомных орбиталей в рамках метода валентных связей, можно определить геометрию комплексов разного состава. Для этого прежде всего необходимо написать электронную формулу валентного уровня и построить схему распределения электронов по квантовым ячейкам. Например, для нейтрального атома никеля:
Переход 4s-электронов на 3d-подуровень превращает парамагнитный атом Ni0 в диамагнитную частицу Ni*:
Полученные вакантные орбитали подвергаются гибридизации, образуя тетраэдрическую конфигурацию. Так построен тетраэдрический диамагнитный комплекс тетракарбонилникель [Ni(CO)4] (КЧ = 4), который характеризуется значительной устойчивостью. Если комплексообразователем служит никель(II) с электронной конфигурацией Такое строение имеет неустойчивый парамагнитный комплекс тетрабромоникколат(II)-ион Тип гибридизации dsp2 и плоскоквадратная форма комплекса реализуются при образовании устойчивого диамагнитного комплекса тетрацианоникколат(II)-иона Если синтез цианидного комплекса вести в условиях избытка лиганда, можно реализовать координационное число 5: Устойчивый диамагнитный комплекс пентацианоникколат(II)-ион Октаэдрический комплекс никеля(II) Если в гибридизации участвуют атомные орбитали внешнего d-подуровня, комплекс, как правило, в значительной степени парамагнитен и называется внешнеорбитальным или высокоспиновым. Строение таких комплексов может отвечать типу гибридизации, например, sp3d2. При рассмотрении комплексов железа(II) обнаруживаются и внешнеорбитальные, и внутриорбитальные комплексы.
Приведенная схема показывает, как образуются парамагнитный высокоспиновый гексафтороферрат(II)-ион [FeF6]4- и диамагнитный низкоспиновый Сама по себе теория валентных связей не дает ответа на вопрос, какой вид комплекса образуется в каждом конкретном случае, так как этот метод не учитывает влияния природы лиганда. Поэтому метод валентных связей должен обязательно дополняться данными о магнитных свойствах комплекса либо сведениями о влиянии лиганда на характер образующегося комплекса. 6.3. Теория кристаллического поля .Теория кристаллического поля пришла на смену теории валентных связей в 40-х годах XX столетия. В чистом виде она сейчас не применяется, так как не может объяснить образование ковалентных связей в комплексных соединениях и совершенно не учитывает истинного состояния лигандов (например, их действительных размеров) даже в случае взаимодействий, близких к чисто электростатическим. Уже с середины 50-х годов упрощенная теория кристаллического поля была заменена усовершенствованной теорией поля лигандов, учитывающей ковалентный характер химических связей между комплексообразователем и лигандом. Однако наиболее общий подход к объяснению образования комплексных соединений дает теория молекулярных орбиталей (МО), которая в настоящее время превалирует над всеми остальными. Метод молекулярных орбиталей предусматривает и чисто электростатическое взаимодействие при отсутствии перекрывания атомных орбиталей, и всю совокупность промежуточных степеней перекрывания. Рассмотрим основные понятия теории кристаллического поля, которая, как и теория валентных связей, все еще сохраняет свое значение для качественного описания химических связей в комплексных соединениях из-за большой простоты и наглядности. В теории кристаллического поля химическая связь комплексообразователь – лиганд считается электростатической. В соответствии с этой теорией лиганды располагаются вокруг комплексообразователя в вершинах правильных многогранников (полиэдров) в виде точечных зарядов. Реальный объем лиганда теорией во внимание не принимается. Лиганды, как точечные заряды, создают вокруг комплексообразователя электростатическое поле (“кристаллическое поле”, если рассматривать кристалл комплексного соединения, или поле лигандов), в котором энергетические уровни комплексообразователя и прежде всего d-подуровни расщепляются, и их энергия изменяется. Характер расщепления, энергия новых энергетических уровней зависит от симметрии расположения лигандов ( октаэдрическое, тетраэдрическое или иное кристаллическое поле ). Когда в качестве лигандов координируются молекулы H2O, NH3, CO и другие, их рассматривают как диполи, ориентированные отрицательным зарядом к комплексообразователю. Рассмотрим случай октаэдрического расположения лигандов (например, Однако в октаэдрическом поле лигандов d-АО комплексообразователя попадают в неравноценное положение. Атомные орбитали d(z2) и d(x2-
y2), вытянутые вдоль осей координат, ближе всего подходят к лигандам. Между этими орбиталями и лигандами, находящимися в вершинах октаэдра, возникают значительные силы отталкивания, приводящие к увеличению энергии орбиталей. Иначе говоря, данные атомные орбитали подвергаются максимальному воздействию поля лигандов. Физической моделью такого взаимодействия может служить сильно сжатая пружина. Другие три d-АО – d(xy), d(xz) и d(yz), расположенные между осями координат и между лигандами, находятся на более значительном расстоянии от них. Взаимодействие таких d-АО с лигандами минимально, а следовательно – энергия d(xy), d(xz) и d(yz)-АО понижается по сравнению с исходной. Таким образом, пятикратно вырожденные d-АО комплексообразователя, попадая в октаэдрическое поле лигандов, подвергаются расщеплению на две группы новых орбиталей – трехкратно вырожденные орбитали с более низкой энергией, d(xy), d(xz) и d(yz), и двукратно вырожденные орбитали с более высокой энергией, d(z2) и d(x2-y2). Эти новые группы d-орбиталей с более низкой и более высокой энергией обозначают de и dg: Разность энергий двух новых подуровней de и dg получила название параметра расщепления D0: E2 – E1 = D0 Расположение двух новых энергетических подуровней de и dg по отношению к исходному (d-АО) на энергетической диаграмме несимметричное: (Е2 – Е0) > (Е0 – Е1). Квантово-механическая теория требует, чтобы при полном заселении новых энергетических уровней электронами общая энергия осталась без изменения, т.е. она должна остаться равной Е0. 4(Е2 – Е0) = 6(Е0 – Е1), где 4 и 6 – максимальное число электронов на dg- и de-АО. Из этого равенства следует, что (Е2 – Е0) / (Е0 – Е1) = 3/2 и D0 / (Е0 – Е1) = 5/2, откуда (Е0 – Е1) = 2/5 ´ D0>. Размещение каждого электрона из шести максимально возможных на de-орбитали вызывает уменьшение (выигрыш) энергии на 2/5 D0. Наоборот, размещение каждого электрона из четырех возможных на dg-орбитали вызывает увеличение (затрату) энергии на 3/5 D0. Если заселить электронами de- и dg-орбитали полностью, то никакого выигрыша энергии не будет (как не будет и дополнительной затраты энергии): 4 ´ 3/5 ´ D0 - 6 ´ 2/5 ´ D0 = 0. Но если исходная d-АО заселена только частично и содержит от 1 до 6 электронов, и эти электроны размещаются только на de-АО, то мы получим значительный выигрыш энергии. Специфика каждого из лигандов сказывается в том, какое поле данный лиганд создает – сильное или слабое. Чем сильнее поле лигандов, чем больше значение параметра расщепления D0. Изучение параметра расщепления, как правило, основано на спектроскопических исследованиях. Длины волн полос поглощения комплексов l в кристаллическом состоянии или в растворе, обусловленные переходом электронов с de- на dg-АО, связаны с параметром расщепления D0 следующим образом: n = 1 / l; D0 = Е2 – Е1 = h ´ n = h ´ (c / l) = h ´ c ´ n, где постоянная Планка h равна 6,626 ´ 10-34 Дж . с; Параметр расщепления, помимо типа лиганда, зависит от степени окисления и природы комплексообразователя. При увеличении заряда ядра атома-комплексообразователя D0 тоже растет. Катионы гексаамминкобальта(III) Зависимость D0 от природы лигандов более разнообразна. В результате исследования многочисленных комплексных соединений было установлено, что по способности увеличивать параметр расщепления металлов-комплексообразователей, находящихся в своих обычных степенях окисления, наиболее распространенные лиганды можно расположить в следующий спектрохимический ряд, вдоль которого значение D0 монотонно растет:
Таким образом, наиболее сильное электростатическое поле вокруг комплексообразователя и самое сильное расщепление d-АО вызывают лиганды NO2-, CN- и CO.
Рассмотрим распределение электронов по de- и dg-орбиталям в октаэдрическом поле лигандов. Заселение de- и dg-орбиталей происходит в полном соответствии с правилом Гунда и принципом Паули. При этом независимо от значения параметра расщепления первые три электрона занимают квантовые ячейки de-подуровня:
Если число электронов на d-подуровне комплексообразователя больше трех, для размещения их по расщепленным подуровням появляется две возможности. При низком значении параметра расщепления (слабое поле лигандов) электроны преодолевают энергетический барьер, разделяющий de- и dg-орбитали; четвертый, а затем и пятый электроны заселяют квантовые ячейки dg-подуровня. При сильном поле лигандов и высоком значении D0 заселение четвертым и пятым электроном dg-подуровня исключено; происходит заполнение de-орбиталей.
При слабом поле лигандов заселяющие квантовые ячейки 4 или 5 электронов имеют параллельные спины, поэтому получаемый комплекс оказывается сильно парамагнитен. В сильном поле лигандов образуются одна, а затем две электронные пары на de-подуровне, так что парамагнетизм комплекса оказывается гораздо слабее.
Шестой, седьмой и восьмой электроны в случае слабого поля оказываются снова на de-подуровне, дополняя конфигурации до электронных пар (одной в случае d6, двух – d7 и трех – d8):
В случае сильного поля лигандов шестой электрон заселяет de-АО, приводя к диамагнетизму комплекса, после чего седьмой и восьмой электроны поступают на dg-подуровень:
Очевидно, при восьмиэлектронной конфигурации различия в строении между комплексами с лигандами слабого и сильного поля исчезают. Заселение орбиталей девятым и десятым электроном также не различается для комплексов обоих типов:
Вернемся к рассмотрению электронного строения октаэдрических комплексных ионов
В анионе
В ионе Аналогичным образом могут быть представлены схемы распределения электронов по орбиталям в октаэдрическом поле для ионов
Лиганды H2O создают слабое поле; обмен электронами между de- и dg-орбиталями не вызывает затруднений и поэтому число неспаренных электронов в комплексном ионе такое же, как и в условном ионе Fe+II. Получаемый аквакомплекс – высокоспиновый, парамагнитный. 6.4. Цветность комплексных соединений
Многие комплексные соединения в кристаллическом состоянии и водном растворе отличаются яркой окраской. Так, водный раствор, содержащий катионы Если через раствор или кристаллический образец вещества пропускать свет видимой части спектра, то в принципе возможны три варианта физического поведения образца: отсутствие поглощения света любой длины волны (образец вещества бесцветен, хотя может иметь полосы поглощения в ультрафиолетовой области спектра); полное поглощение света во всем интервале длин волн (образец будет казаться черным); наконец, поглощение света только определенной длины волны (тогда образец будет иметь цвет, дополнительный к поглощенному узкому участку спектра). Таким образом, цвет раствора или кристаллов определяется частотой полос поглощения видимого света:
Поглощение квантов света комплексами (например, имеющими октаэдрическое строение) объясняется взаимодействием света с электронами, находящимися на de-подуровне, сопровождаемое их переходом на вакантные орбитали dg-подуровня.
Например, при пропускании света через водный раствор, содержащий катионы гексаакватитана(III)
Поэтому раствор, содержащий Раствор соли ванадия
Существует всего два варианта перехода двух электронов на dg-подуровень: либо оба электрона занимают dg-АО, либо только один из них. Любые другие переходы электронов, связанные с уменьшением суммарного спина, запрещены. Если комплексообразователь имеет электронную конфигурацию d0 или d10, то переходы электронов с de- на dg-подуровень или наоборот невозможны либо из-за отсутствия электронов, либо из-за отсутствия вакантных орбиталей. Поэтому растворы комплексов с такими комплексообразователями, как Sc(III), Cu(I), Zn(II), Cd(II) и т.п., не поглощают энергии в видимой части спектра и кажутся бесцветными:
Избирательность поглощения света зависит не только от комплексообразователя и степени его окисления, но и от вида лигандов. При замене в комплексном соединении лигандов, находящихся в левой части спектрохимического ряда, на лиганды, создающие сильное электростатическое поле, наблюдается увеличение доли энергии, поглощаемой электронами из проходящего света и как следствие – уменьшение длины волны соответствующей полосы поглощения. Так, водный раствор, содержащий катионы тетрааквамеди(II) ________________________
Повторить:
6.1. Теория валентных связей ||
_________________________
|
![]() |